3.7.12 \(\int (d x)^m \sqrt {a^2+2 a b x^2+b^2 x^4} \, dx\)

Optimal. Leaf size=97 \[ \frac {b \sqrt {a^2+2 a b x^2+b^2 x^4} (d x)^{m+3}}{d^3 (m+3) \left (a+b x^2\right )}+\frac {a \sqrt {a^2+2 a b x^2+b^2 x^4} (d x)^{m+1}}{d (m+1) \left (a+b x^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {1112, 14} \begin {gather*} \frac {b \sqrt {a^2+2 a b x^2+b^2 x^4} (d x)^{m+3}}{d^3 (m+3) \left (a+b x^2\right )}+\frac {a \sqrt {a^2+2 a b x^2+b^2 x^4} (d x)^{m+1}}{d (m+1) \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d*x)^m*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4],x]

[Out]

(a*(d*x)^(1 + m)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(d*(1 + m)*(a + b*x^2)) + (b*(d*x)^(3 + m)*Sqrt[a^2 + 2*a*b*
x^2 + b^2*x^4])/(d^3*(3 + m)*(a + b*x^2))

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rubi steps

\begin {align*} \int (d x)^m \sqrt {a^2+2 a b x^2+b^2 x^4} \, dx &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int (d x)^m \left (a b+b^2 x^2\right ) \, dx}{a b+b^2 x^2}\\ &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \left (a b (d x)^m+\frac {b^2 (d x)^{2+m}}{d^2}\right ) \, dx}{a b+b^2 x^2}\\ &=\frac {a (d x)^{1+m} \sqrt {a^2+2 a b x^2+b^2 x^4}}{d (1+m) \left (a+b x^2\right )}+\frac {b (d x)^{3+m} \sqrt {a^2+2 a b x^2+b^2 x^4}}{d^3 (3+m) \left (a+b x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 53, normalized size = 0.55 \begin {gather*} \frac {x \sqrt {\left (a+b x^2\right )^2} (d x)^m \left (a (m+3)+b (m+1) x^2\right )}{(m+1) (m+3) \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^m*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4],x]

[Out]

(x*(d*x)^m*Sqrt[(a + b*x^2)^2]*(a*(3 + m) + b*(1 + m)*x^2))/((1 + m)*(3 + m)*(a + b*x^2))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.75, size = 0, normalized size = 0.00 \begin {gather*} \int (d x)^m \sqrt {a^2+2 a b x^2+b^2 x^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(d*x)^m*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4],x]

[Out]

Defer[IntegrateAlgebraic][(d*x)^m*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4], x]

________________________________________________________________________________________

fricas [A]  time = 2.03, size = 35, normalized size = 0.36 \begin {gather*} \frac {{\left ({\left (b m + b\right )} x^{3} + {\left (a m + 3 \, a\right )} x\right )} \left (d x\right )^{m}}{m^{2} + 4 \, m + 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(b^2*x^4+2*a*b*x^2+a^2)^(1/2),x, algorithm="fricas")

[Out]

((b*m + b)*x^3 + (a*m + 3*a)*x)*(d*x)^m/(m^2 + 4*m + 3)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 83, normalized size = 0.86 \begin {gather*} \frac {\left (d x\right )^{m} b m x^{3} \mathrm {sgn}\left (b x^{2} + a\right ) + \left (d x\right )^{m} b x^{3} \mathrm {sgn}\left (b x^{2} + a\right ) + \left (d x\right )^{m} a m x \mathrm {sgn}\left (b x^{2} + a\right ) + 3 \, \left (d x\right )^{m} a x \mathrm {sgn}\left (b x^{2} + a\right )}{m^{2} + 4 \, m + 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(b^2*x^4+2*a*b*x^2+a^2)^(1/2),x, algorithm="giac")

[Out]

((d*x)^m*b*m*x^3*sgn(b*x^2 + a) + (d*x)^m*b*x^3*sgn(b*x^2 + a) + (d*x)^m*a*m*x*sgn(b*x^2 + a) + 3*(d*x)^m*a*x*
sgn(b*x^2 + a))/(m^2 + 4*m + 3)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 56, normalized size = 0.58 \begin {gather*} \frac {\left (b m \,x^{2}+b \,x^{2}+a m +3 a \right ) \sqrt {\left (b \,x^{2}+a \right )^{2}}\, x \left (d x \right )^{m}}{\left (m +3\right ) \left (m +1\right ) \left (b \,x^{2}+a \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(b^2*x^4+2*a*b*x^2+a^2)^(1/2),x)

[Out]

x*(b*m*x^2+b*x^2+a*m+3*a)*(d*x)^m*((b*x^2+a)^2)^(1/2)/(m+3)/(m+1)/(b*x^2+a)

________________________________________________________________________________________

maxima [A]  time = 1.40, size = 35, normalized size = 0.36 \begin {gather*} \frac {{\left (b d^{m} {\left (m + 1\right )} x^{3} + a d^{m} {\left (m + 3\right )} x\right )} x^{m}}{m^{2} + 4 \, m + 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(b^2*x^4+2*a*b*x^2+a^2)^(1/2),x, algorithm="maxima")

[Out]

(b*d^m*(m + 1)*x^3 + a*d^m*(m + 3)*x)*x^m/(m^2 + 4*m + 3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (d\,x\right )}^m\,\sqrt {a^2+2\,a\,b\,x^2+b^2\,x^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(a^2 + b^2*x^4 + 2*a*b*x^2)^(1/2),x)

[Out]

int((d*x)^m*(a^2 + b^2*x^4 + 2*a*b*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (d x\right )^{m} \sqrt {\left (a + b x^{2}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m*(b**2*x**4+2*a*b*x**2+a**2)**(1/2),x)

[Out]

Integral((d*x)**m*sqrt((a + b*x**2)**2), x)

________________________________________________________________________________________